Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2870695.v1

ABSTRACT

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM, B, NK and myeloid cells, with conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.


Subject(s)
Lymphoma , Severe Acute Respiratory Syndrome , COVID-19 , Neoplasms, Glandular and Epithelial
2.
Axioms ; 11(12):660, 2022.
Article in English | MDPI | ID: covidwho-2123510

ABSTRACT

The enhanced virulence and infectiousness of the Omicron variant of SARS-CoV-2 is having more significant impacts on certain socioeconomic areas, and rapidly suppressing the spread of the epidemic remains a priority for maintaining public health security throughout the world. Thus, we applied multi-agent modeling theory to create a social simulation model of Omicron variant transmission and prevention and control in order to analyze the virus transmission status in complex urban systems and its changing trends under different interventions. By considering the six municipal districts under the jurisdiction of Taiyuan City as examples, we developed state transition rules between five types of resident agents, mobility and contact behavior rules, and rules for patient admission behavior by hospital agents. We then conducted multi-scenario simulation experiments based on single measures of pharmacological and non-pharmacological interventions under non-governmental control as well as multiple interventions in combination to evaluate the effects of different measures on rapidly suppressing the spread of the epidemic. The experimental results demonstrated the utility of the model and the multi-agent modeling method effectively analyzed the transmission trends for the Omicron variant, thereby allowing a comprehensive diagnosis of the future urban epidemic situation and providing an important scientific basis for exploring more accurate normalized prevention and control measures.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424961

ABSTRACT

Host-virus protein-protein interaction is the key component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lifecycle. We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Functional characterization and further validation of these interactions elucidated how distinct SARS-CoV-2 viral proteins participate in its lifecycle, and discovered potential drug targets to the treatment of COVID-19. The interactomes of two key SARS-CoV-2 encoded viral proteins, NSP1 and N protein, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of coronavirus disease-2019 provides valuable resources for understanding and treating this disease.


Subject(s)
Coronavirus Infections , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424906

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has become a serious global threat. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for this pandemic has imposed a severe burden on the medical settings. The spike (S) protein of SARS-CoV-2 is an important structural protein playing a key role in the viral entry. This protein is responsible for the receptor recognition and cell membrane fusion process. The recent reports of the appearance and spread of new SARS-CoV-2 strain has raised alarms. It was reported that this new variant containing the prominent active site mutation in the RBD (N501Y) was rapidly spreading within the population. The reported N501Y mutation within the spike's essential part, known as the receptor-binding domain has raised several questions. Here in this study we have tried to explore the effect of N501Y mutation within the spike protein using several in silico approaches


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424974

ABSTRACT

COVID-19, caused by SARS-CoV-2, was first reported in China in 2019 and has transmitted rapidly around the world, currently responsible for 83 million reported cases and over 1.8 million deaths. The mode of transmission is believed principally to be airborne exposure to respiratory droplets from symptomatic and asymptomatic patients but there is also a risk of the droplets contaminating fomites such as touch surfaces including door handles, stair rails etc, leading to hand pick up and transfer to eyes, nose and mouth. We have previously shown that human coronavirus 229E survives for more than 5 days on inanimate surfaces and another laboratory reproduced this for SARS-CoV-2 this year. However, we showed rapid inactivation of Hu-CoV-229E within 10 minutes on different copper surfaces while the other laboratory indicated this took 4 hours for SARS-CoV-2. So why the difference? We have repeated our work with SARS-CoV-2 and can confirm that this coronavirus can be inactivated on copper surfaces in as little as 1 minute. We discuss why the 4 hour result may be technically flawed.


Subject(s)
COVID-19
6.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202003.0160.v1

ABSTRACT

The ongoing pandemic of the 2019 novel coronavirus disease (COVID-19) raises a global health crisis, which has resulted in 75,778 confirmed cases with 2130 deaths in China and beyond. Atypical symptom renders it challenging to earlier recognize the 2019-nCoV carrier with the potential ability of equivalent transmission. Therefore, it is needed to gain full spectrum of COVID-19. Here we report clustered COVID-19 cases of person-to-person transmission. The symptoms of typical pneumonia are shared by the two familial members, namely son (Patient 1) and father (Patient 2). Unexpectedly, an influenza-like illness (ILI) is also caused in Patient 3 having close contact with Patient 1 at personal dinner party. Combined with clinical and epidemiological study, chest computed tomography (CT) and molecular diagnosis demonstrate that all the three cases tested positive for COVID-19 with distinct symptoms by human-to-human transmission. To the best of knowledge, it closes in part (if not all), a missing gap of clinical repertoires of COVID-19 outbreaks and underlines the possibility that neglection of cryptic/asymptomatic/mild cold-like syndromes gives biased screen in the earlier stage of COVID-19 cases.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL